

OECI Working Groups

Biobanks and Personalised Cancer Care: a timely opportunity for OECI

Olli Carpén^{1,2}

1. Department of Pathology, University of Helsinki, Helsinki, Finland, Professor

2. Organisation of European Cancer Institutes, Biobanks and Molecular Pathobiology Working Group Chairperson

A PROPOSAL TO BUILD AN OECI BIOBANK NETWORK TO FOSTER CANCER RESEARCH AND CLINICAL CARE

- What and why?
- Where are we now?
- Opportunities and challenges
- What next towards a concrete proposal

Biobanks provide answers to emerging opportunities and challenges

- (Bio)medical research is rapidly evolving AI can analyse large multiple datasets for hypothesis generation and testing
- New technologies enable cost-effective multimodal analyses of large sample collections
- The role of genetic variant combinations in disease origin, evolution and treatment response is increasingly recognised
- New therapy options and more personalised treatments at the same time costs are rising and patient equality remains a challenge
- How to choose the best therapy options?

nature reviews genetics

https://doi.org/10.1038/s41576-024-00794-y

Review article

Check for updates

Biobanking with genetics shapes precision medicine and global health

C. Scott Gallagher, Geoffrey S. Ginsburg & Anjené Musick 🕲 🖂

Abstract	Sections	
Precision medicine provides patients with access to personally tailored	Introduction	
treatments based on individual-level data. However, developing	Biobanks and data types	
personalized therapies requires analyses with substantial statistical	Biobanks advance precision	
power to map genetic and epidemiologic associations that ultimately	medicine	
create models informing clinical decisions. As one solution, biobanks	Limitations of biobanks	

Biobanks serve three parallel tasks

- Support fundamental, translational, and clinical research
- Provide material for industry developing novel diagnostics and innovative therapies
- Bridge the gap and facilitate transfer of new research findings to clinical care

Where are we now?

- Over 90 OECI centres host biobanks operating at various activity levels.
- There is virtually no coordination of activities, harmonised standards or joint projects at OECI level
- A more thorough survey of existing activities and interest in collaborative activities is needed
- Many of the OECI biobanks are also linked with BBMRI-ERIC infrastructure possible to take advantage of their expertise

The opportunity

- Integration of AI tools into clinical care and personalised cancer treatment requires biological samples and phenotypic information (RWD) that can only be offered by large-scale biobanking.
- We lack multicentric initiatives that generate sufficiently large cohorts to answer targeted research questions and, in particular, fulfil the big data analysis and AI algorithm development requirements.
- Opportunity for OECI biobanks acting together, to combine research with clinical care, foster capacity building, eventually leading to improved patient care

Examples of potential research activities within OECI network

- Personalized cancer prevention: screening of biobank samples for genetic alterations that increase a person's cancer risk.
- Development and optimisation of new diagnostic tests for cancer detection, response evaluation or follow-up.
- Al tools for digital pathology and other applications (Al Factories)
- Longitudinal blood sample collections from (rare) cancer patients for cell-free DNA and biomarker studies
- Prospective cancer tissue collections for multiomics profiling studies
- Clinical trials, including those using molecular profiling as inclusion criteria

Virchow is trained on 1.5 million hematoxylin and eosin stained whole slide images from diverse tissue groups

Pathologist

Slides in the Machine

Digital pathology is the future of storing and sharing images of tissue – and combining learning could further transform the field

VIRCHOW: A MILLION-SLIDE DIGITAL PATHOLOGY FOUNDATION MODEL

A PREPRINT

Eugene Vorontsov^{†1}, Alican Bozkurt^{†1}, Adam Casson^{†1}, George Shaikovski^{†1}, Michal Zelechowski^{†1}, Siqi Liu^{†4}, Philippe Mathieu¹, Alexander van Eck¹, Donghun Lee¹, Julian Viret¹, Eric Robert¹, Yi Kan Wang¹, Jeremy D. Kunz¹, Matthew C. H. Lee¹, Jan H. Bernhard¹, Ran A. Godrich¹, Gerard Oakley¹, Ewan Millar², Matthew Hanna^{1,3}, Juan Retamero¹, William A. Moye¹, Razik Yousfi¹, Christopher Kanan^{1,4}, David Klimstra^{1,3}, Brandon Rothrock¹, and Thomas J. Fuchs¹

> ¹Paige, NYC, NY United States ²NSW Health Pathology, St George Hospital, Sydney Australia ³Memorial Sloan Kettering Cancer Center, NYC, NY United States ⁴University of Rochester, Rochester, NY United States

ABSTRACT

Computational pathology uses artificial intelligence to enable precision medicine and decision support systems through the analysis of whole slide images. It has the potential to revolutionize the diagnosis and treatment of cancer. However, a major challenge to this objective is that for many specific computational pathology tasks the amount of data is inadequate for development. To address this challenge, we created Virchow, a 632 million parameter deep neural network foundation model for computational pathology. Using self-supervised learning, Virchow is trained on 1.5 million

Strengths	Weaknesses
 Access to diverse, high-quality biospecimens across Europe Potential for large-scale, multicenter cancer research Alignment with EU health and research priorities 	 Complex regulatory landscape across countries Variability in infrastructure and capabilities
Opportunities	Threats
 EU funding programs (e.g., Horizon Europe). Integration with AI and precision medicine. Public-private partnerships and pharma collaborations. Improved treatments for cancer patients 	 Data privacy breaches or ethical controversies Lack of interest / support at institutional level

What next – steps towards a concrete plan

- A survey on the activities and resources of OECI biobanks and individuals interested to bring the proposal forward (Q3-4/2025)
- First version of a work plan with proposal of joint activities and pilot projects (Q1/2026)
- A funding plan, including opportunities for EU-funding (Q1/2026)
- Plans for collaboration with BBMRI-ERIC (quality, BBMRI catalogue, infra-dev projects etc.) (Q4/2025-Q1/2025)
- Final plan for OECI biobank network (to be presented in OECI DAYS 2026)